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Abstract

This paper addresses the following version of the multi-
ple range scan registration problem. A scanner with an as-
sociated intensity camera is placed at a series of locations
throughout a large environment; scans are acquired at each
location. The problem is to decide automatically which
scans overlap and to estimate the parameters of the trans-
formations aligning these scans. Our technique is based
on (1) detecting and matching keypoints — distinctive loca-
tions in range and intensity images, (2) generating and re-
fining a transformation estimate from each keypoint match,
and (3) deciding if a given refined estimate is correct.

While these steps are familiar, we present novel ap-
proaches to each. A new range keypoint technique is pre-
sented that uses spin images to describe holes in smooth
surfaces. Intensity keypoints are detected using multiscale
filters, described using intensity gradient histograms, and
backprojected to form 3D keypoints. A hypothesized trans-
formation is generated by matching a single keypoint from
one scan to a single keypoint from another, and is refined
using a robust form of the ICP algorithm in combination
with controlled region growing. Deciding whether a refined
transformation is correct is based on three criteria: align-
ment accuracy, visibility, and a novel randomness measure.
Together these three steps produce good results in test scans
of the Rensselaer campus.

1. Introduction

This paper addresses a new form of the multiple range
image registration problem. The data are range scans taken
from a variety of positions throughout a large area — a uni-
versity campus is our test case. These scans might overlap
by a little bit, by a large fraction, or not at all. The scans
are not taken incrementally, and there will be at most a few

scans of any region. Challenges include handling a vari-
ety of structures (such as buildings and landscapes), moving
objects, changes in illumination, and significant occlusions.
The goal is to determine which scans overlap and to com-
pute the transformations that best align overlapping scans.
We approach this goal as a “location recognition problem”
because the major issue is a decision about which scans
show part of the same environment.

Previous algorithms have approached multiple range im-
age registration by assuming that either coarse initial align-
ments are available, or that the scans are taken of static
scenes and have substantial overlap between them. The al-
gorithms we develop should certainly work when such as-
sumptions are met, but our goal is to place no restrictions on
the relative placement of the scans. Similarly, GPS and/or
inertial navigation units may be available to provide ini-
tial location estimates, but these systems sometimes fail.
The techniques we develop here can help detect and cor-
rect these failures. Thus, solutions to the location recogni-
tion problem will make 3D environment modeling systems
more autonomous, more flexible, and more robust.

We present our initial work toward solving this problem.
Our overall approach is built on three algorithmic compo-
nents: hypothesis generation, refinement, and verification.
Hypothesis generation is the creation of initial transforma-
tion estimates through matching of keypoints — locations
of distinctive structure in range scans or in the associated
intensity images. We introduce a new range keypoint ex-
traction technique, and we adapt image keypoint extraction
techniques from the computer vision literature. Each pair of
scans will lead to the creation of many keypoint matches.

A hypothesized 3D rigid transformation between a pair
of range scans is generated for each keypoint match indi-
vidually, even for intensity-image keypoint matches. Cre-
ating an estimate from each individual match avoids the
need for combinatorial search methods or clustering tech-
niques. This is important because particularly difficult data
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sets have relatively few correct matches. Since the initial es-
timate generated from a keypoint match can only be trusted
in a small region of the data surrounding the keypoint in
each scan — even if the correspondence is correct — the re-
finement technique alternates steps of (1) re-estimating the
transformation using a robust form of the iterative closest
points (ICP) algorithm applied within the region, and (2)
expanding the region. This allows inaccurate initial esti-
mates to be locally refined before being applied to entire
data sets.

The final component, verification, decides if a given re-
fined transformation is correct and therefore if the location
seen in one scan has been recognized in the other. This step
is crucial in our approach because we make no attempt to
pre-filter matches other than by the match similarity mea-
sure. Similar to other techniques [12], our decision criteria
include measurements of the alignment accuracy and the
fraction of visible surface points matched. Building from
[4], we include a novel third measure designed to determine
if the alignment is unambiguous. This new measure is based
on regenerating keypoints using the estimated transforma-
tion. The final decision criterion is based on a combination
of these accuracy, coverage and ambiguity measures.

2. Related Work

Several papers have addressed the problem of multiscan
registration for building 3D models. In earlier work for
modeling single objects, many overlapping scans are ac-
quired and the main problem is high-precision registration
starting from reasonable initial estimates (see e.g. [1, 13]).
Some recent work has focused on modeling outdoor scenes,
either single buildings or larger-scale areas. In [21, 22],
registration is initialized by matching 3D line segments be-
tween scans, and clustering matched line segments to de-
termine which scans overlap. In [8], data are obtained con-
tinually from a scanner mounted on a moving vehicle; air-
borne imagery is used to guide the alignment of these scans
into a complete model. Recent multiscan registration work
[12] has used spin images [14] to initialize registration, a
graph-based multiscan refinement algorithm, and a verifi-
cation step based on a combination of accuracy and visibil-
ity. While this work has an underlying assumption of static
scenes and substantial overlap between scans, several of the
techniques developed are applied and extended in our work.

Initialization methods have been the focus of substan-
tial effort in recognition and in registration, using both 2D
images and 3D range scans. For 3D scans, early work fo-
cused on detecting and matching corners and points of high
curvature [5]. More recent work has focused on the use
of spin images and related representations as summary de-
scriptions (sometimes called “point descriptors”) for match-
ing [7]. Work on intensity images has emphasized both the

detection and description of point locations. Detection algo-
rithms have used the multiscale Laplacian of Gaussian [16],
and multiscale corner detection [18], among others. While
a host of descriptors has been proposed, affine-invariant
versions of Lowe’s SIFT descriptor, which is a scale- and
contrast-normalized histogram of intensity-gradient, and
steerable filters have proven most effective [17]. Finally,
researchers have combined both intensity and range data in
matching, focusing on filtering matches [19] or using range
data to normalize keypoint descriptions [23]. Both have re-
ported preliminary results on alignment of single objects.

Work in refinementalgorithms for range scan registra-
tion has focused on the ICP algorithm, which alternately
generates temporary correspondences based on an esti-
mated transformation and refines the transformation esti-
mate based on the correspondences. ICP was proposed al-
most simultaneously in several papers in the early 1990s
(e.g. see [2, 6]), and has been studied extensively since [20].

Automatic verification — the problem of determining
whether an alignment between a pair of scans or images is
correct — has received less attention. Most techniques are
simply based on the accuracy of the alignment. More recent
work has included tests based on visibility and occlusion
[12], with the use of a Bayesian classifier to formulate the
decision criteria [11]. In image registration, recent keypoint
matching algorithms [4] use a probabilistic argument to de-
termine the minimum number of “good” keypoint matches
required for an alignment to be considered correct. We build
on all of these techniques in our decision criteria.

3. Sensor and Data Collection

All data for the experiments in this paper were collected
around the Rensselaer campus using a Leica HDS 3000
scanner (Figure 1). Bore-sighted RGB images are acquired
by the scanner prior to the start of each scan. The images are
well-calibrated relative to the scanner position, so that the
lines of sight of the range points and image points coincide.
Our experiments have verified that errors in the alignment
are less than0.1◦. The data include both buildings and nat-
ural scenes. In some cases a building that is clearly visible
in one scan is significantly occluded in another.

4. Keypoint Extraction and Matching

Keypoints are distinctive image locations that can be de-
scribed in an approximately viewpoint independent manner.
They have been used for both object recognition and regis-
tration. Our work on the location recognition problem uses
them as both the basis for hypothesis generation and as part
of the hypothesis validation procedure. We propose two
keypoint techniques, one based solely on the range data and



Figure 1. Three example range scans taken on the Rennsselaer campus illustrating some of the
challenges of the location recognition problem, including occlusions, viewpoint variations, and
different types of structures varying from buildings to trees and hillsides (right). The left and center
pair has an extremely small overlap region, with the farthest-away building at the top of the center
scan being the main building in the left scan.

one based primarily on intensity images. Range keypoints
summarize local 3d structure at distinctive locations in the
range scan, while intensity keypoints summarize local in-
tensity structure at distinctive locations in the intensity data.
These therefore offer independent, almost complementary,
approaches to matching and hypothesis generation.

4.1. Range Keypoints and Matching

Our approach to developing range keypoints starts from
the idea of a spin image [14], a 2D histogram of range points
computed in a cylindrical coordinate system centered at a
point of interest. The cylindrical axis may be oriented along
an estimated surface normal or along the axis of least sec-
ond moment. Integrating around the rotation axis condenses
the coordinate system from 3D to a 2D histogram (hence
the term “spin image”). Spin images are descriptors, not
location detectors, and therefore must be combined with a
location detection technique. Earlier work used all the data
or a uniform sampling of locations [7, 12, 14]. We present
an alternative approach designed to handle widely varying
viewpoints, low image overlaps, and occlusions.

We detect locations at which to compute keypoints by
finding holes in smooth surfaces. The spin image coordi-
nate system is centered on the center of mass of the hole
boundary, and the spin image is computed over a region
whose size is a small constant multiple of the diameter of
the hole (see Figure 2). In this way both the shape of the
hole and the geometric structure of the surrounding region
are combined in the spin image descriptor. Holes in man-
made structures occur primarily at doors, windows, and in-
dentations or outcroppings on the faces of buildings. There
are not significant self-occlusions in the regions immedi-
ately surrounding the holes as there would be near more
substantial depth discontinuities, so the computed spin im-

age should not change substantially with viewpoint (pro-
vided the spin-image calculation accommodates sampling
differences). One major concern with using holes is that
they represent repetitive structures; e.g. different windows
on the same building often look the same. We accommo-
date this in part by expanding the size of the spin image
region so that surrounding structure will make the spin im-
age descriptors more distinctive. We also account for this in
our matching and decision criteria, described below.

Clearly, the detection of holes requires segmentation, but
segmentation of range images is still an unsolved problem
[10]. Fortunately, we are more concerned with reliably, re-
peatably extracting the same region in different scans, rather
than computing a segmentation that agrees with human per-
ception. Moreover, our algorithm needs only one success-
fully matched hole in order to succeed, relaxing constraints
on the robustness of the detection algorithm.

The segmentation technique itself extracts nearly planar
surface regions using a technique similar to [3]. Robust
estimates of local surface normals are first computed, and
then seed regions are found where the smallest eigenvalue
of the local covariance matrix is sufficiently small. These
seeds are grown into surface patches and clustered based on
similarity in surface normals and locations. Growth is pri-
oritized so that a surface grows fastest where it is flattest.
At the end, all clusters with fewer than 30 data points are
eliminated. Sufficiently large regions of “missing pixels” in
the planar patches are detected as holes. The missing re-
gions need not be completely enclosed by the patch (e.g. a
doorway at the base of a building). Typically 5-15 holes are
extracted from range scans of buildings (Figure 2).

Spin images are computed by placing a coordinate ori-
gin at the center of the hole and orienting the axis of the
spin cylinder along the surface normal of the surrounding
surface. The contribution of each point is weighted by the



Figure 2. Automatically detected range key-
points, i.e. holes in planar surfaces where
spin images are computed. Black pixels rep-
resent points on planar surfaces. In this ex-
ample all significant holes are found. The cir-
cles represent the area over which the spin
images are computed.

inverse of an estimate of the local sampling density, similar
to [7]. Spin images are matched by computing the cosine
of the angle between the vectors formed by each spin image
histogram, giving a similarity measure in the interval [0,1].

4.2 Intensity Keypoints and Matching

Following [16], intensity keypoints are found by detect-
ing peaks in the response of the Difference-of-Gaussians
operator in the bore-sighted intensity images. Each key-
point has a location, orientation, scale, and descriptor. We
use Lowe’s SIFT descriptor [16], a 128-component his-
togram of normalized gradients, which has proven to be ef-
fective in experimental evaluations [17].

Equally-spaced samples on the perimeter of the scale-
neighborhood around each 2D keypoint are backprojected
along its camera’s line-of-sight to the range surface and
are used for three purposes: (1) If the change in depth be-
tween two consecutive samples is greater than some frac-
tion (0.7) of the total variation in depth around the circle,
then a depth discontinuity is identified and the keypoint is
discarded (Figure 3). (2) The samples’ distances from the
3D keypoint center are used to estimate a 3D scale. (3) The
samples are used to estimate a local plane. The normal to
this plane becomes thez axis of a local 3D coordinate sys-
tem with its origin at the keypoint center. Thex axis is
computed by back-projecting the 2D keypoint orientation
onto the local plane. A right-handed coordinate system is
completed withy = z × x.

Matching these 3D keypoints follows the standard meth-
ods in the literature. For each moving scan keypointpi the
two keypointsqi,0 andqi,1 with the best matching descrip-

Figure 3. Intensity keypoints before (left) and
after (right) range image filtering to eliminate
keypoints near depth discontinuities.

tors from the fixed image are found. LetS(p,q) denote the
similarity score between the descriptors associated withp
andq. Then, if

S(pi,qi,0)
S(pi,qi,1)

< θ (1)

for someθ < 1, the match(pi,qi,0) is accepted as suffi-
ciently unique. Thisratio test is applied to the best match
for each keypointpi, and the surviving matches are sorted
by increasing order of the ratio (1).

5. Refinement

At the refinement stage we are given a set of range and
intensity keypoint correspondences. Each correspondence
matches a 3D point from each of two different scans. The
issue is how to turn these correspondences into hypothe-
sized and refined transformation estimates. There are two
novelties to our refinement procedure:

• Initialization from a single match

• A region growing variant of ICP

Instead of attempting to combine matches to estimate
the transformation, an initial transformation between scans
is computed foreachmatch and then refined. Other tech-
niques in the literature search for subsets of consistent
matches to generate and evaluate the transformation esti-
mate. This involves either a combinatorial search or cluster-
ing in parameter space. Both become increasingly problem-
atic as the fraction of correct keypoint matches decreases
(e.g. due to occlusions or differences in viewpoint). We
don’t want to rely on having a sufficient set of correct corre-
spondences, either in percentage or absolute numbers; such
a reliance limits the overall robustness of the algorithm. In-
stead we rely on rapid ICP refinement and a decision pro-
cedure that can reliably determine whether or not an align-
ment between scans is correct. We will therefore be able



to test hypothesized transformations one-by-one and stop
when one has been generated that is correct.

Computing the initial rigid transformation from a match
between one keypoint from each of two scans is simple if
a 3D coordinate system has been established at each key-
point. For an intensity keypoint, this coordinate system is
established when the keypoint is backprojected into 3D. For
range keypoints, establishing the local coordinate system is
straightforward. The local surface normal becomes thez
axis. A second axis can either be computed from the mo-
ments of the hole boundary points or from the gravity di-
rection obtained from the scanner. Projecting this onto the
plane normal toz produces thex axis. They direction is
the cross-productz × x.

A region growing variant of the ICP algorithm addresses
a problem caused by using a single correspondence to ini-
tialize the transformation estimate. The initial estimate is
often only accurate in the region of the two data sets im-
mediately surrounding the correspondences (see Figure 4).
This is especially likely for intensity keypoints because they
are more local than range keypoints. Applying ICP through-
out the data set starting from this initial estimate can lead to
mismatches and incorrect convergence, even if the corre-
spondence is correct. Our solution is to refine the estimate
in a small region surrounding the corresponding points in
each range scan, and then double the radius of the region
and repeat the process.

Aside from this region growing, the actual ICP proce-
dure is straightforward. Normal distance constraints are
used [6, 20]. Matches are robustly weighted using the
Cauchy M-estimator weight function [9], designed for a
gradual downweighting of outliers. The robust standard de-
viation is estimated for the first ICP iteration in each re-
gion. While we could easily incorporate intensity measures
into the ICP refinement process [15], we currently reserve
the use of intensity constraints for the decision-making step.
Overall, the algorithm tends to converge quickly.

6. Verification Criteria

The final step, verification, requires decision criteria to
determine if a refined transformation is correct. We are
interested in an absolute measure of correctness: one that
can be applied to a single transformation estimate rather re-
quiring a comparison between different estimates. This al-
lows transformation estimates to be evaluated one-by-one
using a greedy approach, but requires a rich measure that
clearly separates good transformation estimates from poor
ones. We combine three measures:

• Accuracy of the alignment

• Visibility constraints

• A non-randomness score

In the following, we denoteI1 as the moving scan, andI2

as the fixed scan.
The accuracy measure is a robust mean-square error of

the transformation estimate. If{xi} is the set of points in
I1, {yi} is the set of closest points inI2 with associated
normals{ηi}, andâ is the set of estimated transformation
parameters, then the accuracy measure is

σ2 =
∑

i

wi[(T(xi; â)− yi) · ηi]
2 /

∑
i

wi, (2)

for robust weightswi. This measure comes directly from
the ICP process. For a correct transformation estimate, the
accuracy must be close to the approximate noise of the sen-
sor. This requirement is not sufficient, however. Alignment
of repetitive structures and accidental alignment of subsets
of the scene can make incorrect alignments seem accurate,
whereas changes in the scene can make correct alignments
seem inaccurate.

The visibility measure is designed to address some of
these problems. This measure gives the fraction of points
that appear to be incorrect whenI1 is mapped ontoI2. If
the scene is static, then the mapping of a range pointx from
I1 into the coordinate system ofI2 should not occlude any
points fromI2 from the perspective of the scanner — oth-
erwise the location in the scene corresponding tox would
have been imaged in scanI2. In theory, only scene changes
and object motion between the acquisition of the two scans
can cause a visibility violation in a correct alignment.

Assume the range scan is represented as a depth image
I2(u, v). Each pointxi from I1 is mapped intoI2. If the
mapped point is within the field of view of the scanner,
let ui, vi be its image coordinates inI2 andzi be its depth
value. Ifzi < I2(ui, vi)− cσ, wherecσ is a small constant
multiplier on the mean-square error, then we say that point
i violates the visibility constraint. The visibility error mea-
sure fromI1 to I2 is the fraction of the mapped points within
the field of view ofI2 that violate the visibility constraint. A
second visibility measure is computed by reversing the roles
of I1 andI2 in the foregoing. The final visibility measure is
the maximum of these measures.

When there are changes in the scene, low overlap, or
repetitive structures, even the visibility measure may not
be enough to determine if an alignment is correct. A third
measure is needed that evaluates the hypothesized transfor-
mation to determine if it represents a random alignment or
a misalignment of a repetitive structure.

The non-randomness measure places keypoints in a cen-
tral role. Each keypoint represents a somewhat distinctive
structure in the image. The search for keypoint matches is
in effect a search over a variety of possible transformations
for the keypoint. Hence, if the transformation maps the key-
point onto its best match, then this is local evidence that
the transformation is unique and non-random [4]. Trans-



Figure 4. Refining a transformation based on a single keypoint match. The pair is the left two scans
from Figure 1. Only 1% of the moving scan and 11% of the fixed scan are in the overlap region. Left:
an initial alignment based on a keypoint in the region circled in black. Points in white are from the
moving scan. Note the substantial misalignment indicated by the black arrow. Right: the refined
transformation estimate. The misalignment is corrected by our refinement procedure producing a
final robust error of 4mm.

formations consistent with many keypoint matches are ex-
tremely unlikely to be wrong. An important challenge to
using this observation, however, is that many original key-
points may not be consistently detected in the two scans,
especially when the viewpoints differ substantially. To ad-
dress this, keypoint matches that are inconsistent with their
best initial match are rematched using the estimated trans-
formation. If the new match is better than the initial match
for this keypoint, then this is additional evidence that the
transformation is non-random and therefore correct.

To be more precise, letM = {(pi,qi)} be the set of
originally matched keypoints. Exactly one of these key-
points was used to initialize the transformation being tested.
For eachpi, let p′

i = T(pi; â) be the mapping ofpi based
on the estimated transformation. For intensity keypoints
this keypoint mapping includes a projection from 3D to 2D
based on camera calibration parameters. We call(pi,p′

i)
a “transform match”. Correspondences such thatp′

i is not
visible in the fixed scan are removed. LetM′ be the re-
sulting reduced set of matches. For eachpi, if ‖p′

i − qi‖
is less than a small threshold that depends on the scale of
the original keypoint, then the original match is considered
consistent with the transformation. Otherwise, we compute
the similarity scoreS(pi,p′

i) for the transform match us-
ing the scale frompi for p′

i. If S(pi,p′
i)/S(pi,qi) passes

the ratio test, then the transform match is considered con-
sistent; it is significantly better than all original matches for
pi. The fraction of matches fromM′ that are either orig-
inally consistent or transform consistent is the used as the
“randomness measure”.

We therefore have three decision (verification) measures:
robust mean-square error, visibility, and randomness. Em-
pirically, we set thresholds on each and require a transfor-
mation to pass all three to be considered verified as correct.
We require the alignment error to be within 6 times the scan-
ner error, the visibility violations to be at most 20%, and at

least 70% of the initially matched keypoints visible in both
scans to be consistent with the final transformation. More
sophisticated techniques could (and should) be developed,
such as in [11], especially when there could be substantial
environmental changes between scans.

7. Experiments and Discussion

We evaluate the three components of our location recog-
nition system — keypoint detection and matching, refine-
ment, and decision making — and validate an overall sys-
tem that combines them. For the tests we run here, the
algorithm attempts to align scans in pairs. (Generaliza-
tion to more than two scans is conceptually straight-forward
by indexing descriptors to simultaneously recover overlap-
ping pairs and the corresponding pairwise transformations,
but this is beyond the scope of our current experiments.)
For each image, range and intensity keypoints are both
extracted. For each pair, matches between keypoints are
generated and rank-ordered — by spin-image comparison
for range keypoints and by the ratio test for intensity key-
points. Up to 50 range keypoints and 200 intensity key-
point matches are retained. Each match is used to generate
a hypothesis, which is then run through the refinement and
verification procedures. While we did this here for the pur-
poses of the experimental evaluation, in practice we use a
greedy approach, where the matches are tested one-by-one
and the procedure ends as soon as a verified transformation
is found. One goal of the experiments is to show that this
approach is viable.

We have acquired 22 scans from various locations on the
Rensselaer campus. Of these, 15 distinct pairs overlap, but
5 of them overlap by an extremely small amount (e.g. see
Figure 1). We therefore consider that we have 10 “reason-
able pairs” and 5 “challenging pairs”. We have manually



Figure 5. Two scans (top and center) for
which range keypoint matching succeeded
(bottom), but intensity keypoint matching
failed. Range keypoints succeeded despite
the highly-repetitive structure of the building
since only one correct match was needed.

verified transformations for each of the 15 pairs, and we use
these as “ground-truth” for testing. We added another 15
pairs of scans that do not overlap to form an initial test suite
of 30 scan pairs.

The overall summary result is that all 10 of the reason-
able pairs and 1 of the 5 challenging pairs were correctly
registered (Figure 4), and all 15 of the non-overlapping pairs
were rejected (none of the transformations survived the ver-
ification test). By “correctly registered” we mean that at
least one keypoint match was refined to an estimate ex-
tremely close to the ground truth. In only 2 cases among
all tests did an incorrect match pass the verification test —
these were both for the reasonable pairs and both were ex-
tremely subtle misalignments. The first involved scans hav-
ing substantially different viewpoints and scales; the sec-
ond involved a small vertical translation error. In both cases
the error was within the scale of the intensity keypoints, so
these matches were counted as correct. Interestingly, for the
4 challenging pairs that were unmatched, hand-selection of
a single match followed by refinement and verification pro-
duced a correct registration.

These preliminary results indicate the potential of the
overall approach. More detailed results on the individual
components of the system are summarized as follows:

• Intensity keypoint matching produced at least one ver-
ified match for 10 of the 11 aligned pairs, while
range keypoint matchings produced at least one veri-
fied match for 6 pairs, but all of the ones for which
at least one keypoint match existed. Range keypoint
matching failed for the other pairs when there were no
common building structures or the “holes” were oc-
cluded. The pair for which range keypoints succeeded,
but intensity keypoints failed is shown in Figure 5.
There was a wide baseline between scans and the win-
dows are highly specular, causing the complete failure
of intensity keypoints. Range keypoints were able to
succeed despite the redundancy of the holes.

• Using the ground-truth, keypoint matches can be la-
beled as approximately correct. For intensity key-
points among the 10 reasonable pairs, there was a wide
variation in the fraction of correct matches, ranging
from 29 out of 30 to 1 out of 30. Even worse, for
the one extremely challenging pair, there was only one
correct match in the top 200 and it was ranked 161.
Similar though less extreme results were obtained for
range keypoints, with some scan pairs having 40% cor-
rect and some less than 5%.

• Among the approximately correct initial matches, 76%
were refined to produce transformations that are con-
sistent with the ground-truth (L2-norm distance within
a small multiple of the sensor noise). The region grow-
ing aspect of the refinement was generally effective,
especially for low overlap (see Figure 4), but some-
times failed when initialized in large planar regions.
Although more work is needed to improve refinement,
these results show that initializing from a single match
is a viable approach: a high fraction of the correct
single matches are verified, and when this verification
fails the algorithm is likely to pick and verify a differ-
ent correct match.

• For the randomness component of the verification step,
regeneration of keys has a varying impact. In many
cases, the improvement was marginal, adding one or
two correct matches, whereas in others it was dramatic,
e.g. increasing the fraction from 27% to 56%.

• In verification, using the randomness test (with inten-
sity keypoints) together the visibility and the ICP er-
ror tests produces 2 false positives (the two discussed
above) and 5 false negatives. The same results are ob-
tained with randomness and ICP error alone. ICP er-
ror and visibility produces 4 false positives and 2 false
negatives. We expect the advantage of using the ran-
domness test to increase when more changes occur in
the environment occur between scans.



8. Conclusion

We have described a general version of the problem of
registering multiple range scans as a location recognition
problem. This approach includes novel techniques for key-
point detection and description, hypothesis generation from
single keypoint matches, refinement using a combination
of robust ICP and region growing, and a verification pro-
cedure that combines measures of accuracy, visibility and
randomness. On a preliminary data set taken of the Rens-
selaer campus, the algorithm has successfully registered all
but the lowest overlap scan pairs, and rejected all but the
most subtly incorrect transformation estimates.

We conclude by offering three primary observations
about how to solve the local recognition (and registration)
problem based on our experiments:

• Both range and intensity keypoints are important.
Range keypoints based on holes and spin images work
extremely well on data sets involving buildings, even
for varying magnifications and baselines. Intensity
keypoints are effective (a) for scans involving signifi-
cant occlusions because they are more local and (b) for
scans involving natural scenes because they are more
generic. Intensity keypoints are less effective for wide
baselines and scenes with significant specularities.

• There is no need to cluster matching results. A greedy
approach that starts from a single keypoint match and
uses a combination of refinement and verification pro-
cedures along the lines we’ve proposed will be effec-
tive. When there are many correct matches, the ap-
proach will quickly find one and produce a correct
transformation estimate. When there are only a few
correct matches, clustering is not likely to be effective.

• While significant tuning still must be done on our cur-
rent refinement and verification procedures, hypothe-
sis generation needs the most future work. In the most
difficult examples we’ve tested, a correct initial corre-
spondence usually exists, but it ranks very low initially.
When this keypoint is “pulled out”, the refinement and
verification procedures usually succeed. We intend to
focus on both range keypoints alone and combinations
of range and intensity keypoints. Handling low over-
laps, occlusions and varying structures will remain our
primary focus in this work.
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